Trichloroethene (TCE) in Indoor and Outdoor Air ## Fact Sheet: February 2005 • "Trichloroethene (TCE) in Indoor and Outdoor Air" is available in Portable Document Format (PDF, 31KB, 4pg.). #### What is trichloroethene? Trichloroethene is a manufactured, volatile organic chemical. It has been used as a solvent to remove grease from metal. Trichloroethene has also been used as a paint stripper, adhesive solvent, as an ingredient in paints and varnishes, and in the manufacture of other organic chemicals. Other names for trichloroethene include TCE and trichloroethylene. TCE is a common name for trichloroethene and will be used for the rest of this fact sheet. TCE is a clear, colorless liquid, and has a somewhat sweet odor. It is non-flammable at room temperature and will evaporate into the air. #### How can I be exposed to TCE? People can be exposed to TCE in air, water and food. Exposure can also occur when TCE, or material containing TCE, gets on the skin. TCE gets into the air by evaporation when it is used. TCE can also enter air and groundwater if it is improperly disposed or leaks into the ground. People can be exposed to TCE if they drink groundwater contaminated with TCE, and if the TCE evaporates from the contaminated drinking water into indoor air during cooking and washing. They may also be exposed if TCE evaporates from the groundwater, enters soil vapor (air spaces between soil particles), and migrates through building foundations into the building's indoor air. This process is called "soil vapor intrusion." ## How can TCE enter and leave my body? If people breathe air containing TCE, some of the TCE is exhaled unchanged from the lungs and back into the air. Much of the TCE gets taken into the body through the lungs and is passed into the blood, which carries it to other parts of the body. The liver changes most of the TCE taken into the blood into other compounds, called breakdown products, which are excreted in the urine in a day or so. However, some of the TCE and its breakdown products can be stored in the fat or the liver, and it may take a few weeks for them to leave the body after exposure stops. ### What kinds of health effects are caused by exposure to TCE in air? In humans, long term exposure to workplace air containing high levels of TCE (generally greater than about 40,000 micrograms of TCE per cubic meter of air (mcg TCE/m³)) is linked to effects on the central nervous system (reduced scores on tests evaluating motor coordination, nausea, headaches, dizziness) and irritation of the mucous membranes. Exposure to higher levels (generally greater than 300,000 mcg TCE/m³) for short periods of time can irritate the eyes and respiratory tract, and can cause effects on the central nervous system, including dizziness, headache, sleepiness, nausea, confusion, blurred vision and fatigue. In laboratory animals, exposure to high levels of TCE has damaged the central nervous system, liver and kidneys, and adversely affected reproduction and development of offspring. Lifetime exposure to high levels of TCE has caused cancer in laboratory animals. Some studies of people exposed for long periods of time to high levels of TCE in workplace air, or elevated levels of TCE in drinking water, show an association between exposure to TCE and increased risks for certain types of cancer, including cancers of the kidney, liver and esophagus, and non-Hodgkin's lymphoma. One study showed an association between elevated levels of TCE in drinking water and effects on fetal development. Other studies suggest an association between workplace TCE exposure and reproductive effects (alterations in sperm counts) in men. We do not know if the effects observed in these studies are due to TCE or some other possible factor (for example, exposure to other chemicals, smoking, alcohol consumption, socioeconomic status, lifestyle choices). Because all of these studies have limitations, they only suggest, but do not prove, that exposure to TCE can cause cancer in humans and can cause developmental and reproductive effects as well. What are background levels of TCE for indoor and outdoor air? The exact meaning of background depends on how a study selected sampling locations and conditions. Generally, sampling locations are selected to be not near known sources of volatile chemicals (for example, a home not near a chemical spill, a hazardous waste site, a dry cleaner, or a factory). In some studies, the criteria for sampling indoor air may require checking containers of volatile chemicals to make sure they are tightly closed or removing those products before samples are taken. The New York State Department of Health (NYSDOH) has used several sources of information on background levels of TCE in indoor and outdoor air. One NYSDOH study of residences heated by fuel oil found that background concentrations of TCE in indoor and outdoor air are less than 1 mcg/m³ in most cases. In this study, most homes did not have obvious sources of volatile organic compounds (VOCs). In those homes with VOC sources, samples were taken and the data are included in the study. #### What are sources of TCE in air in homes? TCE is found in some household products, such as glues, adhesives, paint removers, spot removers, rug cleaning fluids, paints, metal cleaners and typewriter correction fluid. These and other products could be potential sources for TCE in indoor air. Another source of TCE in indoor air is contaminated groundwater that is used for household purposes. Common use of water, such as washing dishes or clothing, showering, or bathing, can introduce TCE into indoor air through volatilization from the water. TCE may also enter homes through vapor intrusion as described on page 1 in the question "How can I be exposed to TCE?". What is the level of TCE that people can smell in the air? The reported odor threshold (the air concentration at which a chemical can be smelled) for TCE in air is about 540,000 mcg TCE/m³. At this level, most people would likely be able to start smelling TCE in air. However, odor thresholds vary from person to person. Some people may be able to detect TCE at levels lower than the reported odor threshold and some people may only detect it at concentrations higher than the reported odor threshold. If I can't smell TCE in the air, am I being exposed? Just because you can't smell TCE doesn't mean there is no exposure. Sampling and testing is the best way to know if TCE is present. What is the NYSDOH's guideline for TCE in air? After a review of the toxicological literature on TCE, the NYSDOH set a guideline of 5 mcg/m³ for TCE in air. This level is lower than the levels that have caused health effects in animals and humans. In setting this level, the NYSDOH also considered the possibility that certain members of the population (infants, children, the elderly, and those with pre-existing health conditions) may be especially sensitive to the effects of TCE. The guideline is not a bright line between air levels that cause health effects and those that do not. The purpose of the guideline is to help guide decisions about the nature of the efforts to reduce TCE exposure. Reasonable and practical actions should be taken to reduce TCE exposure when indoor air levels are above background, even when they are below the guideline of 5 mcg/m³. The urgency to take actions increases as indoor air levels increase, especially when air levels are above the guideline. In all cases, the specific corrective actions to be taken depend on a case-by-case evaluation of the situation. The goal of the recommended actions is to reduce TCE levels in indoor air to as close to background as practical. Should I be concerned about health effects if I am exposed to air levels slightly above the guideline? Below the guideline? The possibility of health effects occurring is low even at air levels slightly above the guideline. In addition, the guideline is based on the assumption that people are continuously exposed to TCE in air all day, every day for as long as a lifetime. This is rarely true for most people who are likely to be exposed for only part of the day and part of their lifetime. How can I limit my exposure to TCE? TCE can get into indoor air through household sources (for example, commercial products that contain TCE), from contaminated drinking water, or by vapor intrusion. As with any indoor air contaminant, removing household sources of TCE will help reduce indoor air levels of the chemical. Maintaining adequate ventilation will also help reduce the indoor air levels of TCE. If TCE is in the indoor air as a result of vapor intrusion, a sub-slab depressurization system, much like a radon mitigation system, will reduce exposures by minimizing the movement of vapors that are beneath a slab into a building. If TCE is in the water supply of a house, a carbon filter on the water supply to remove the TCE will minimize ingestion and inhalation exposures. Is there a medical test that can tell me whether I have been exposed to TCE? TCE can be measured in people's breath soon after they are exposed. TCE and some of its breakdown products can be measured in the urine and blood. These tests are not routinely available at a doctor's office. Urine and blood tests can indicate that you may have recently (within the last few days) been exposed to a large amount of the chemical. However, they cannot tell you the source of the exposure. Some of the breakdown products of TCE can also be formed from other chemicals. When should my children or I see a physician? If you believe you or your children have symptoms that you think are caused by TCE exposure, you or your children should see a physician. You should tell the physician about the symptoms and about when, how and for how long you think you and/or your children were exposed to TCE. What is the NYSDOH doing to educate physicians about TCE? The NYSDOH maintains an Infoline (1-800-458-1158) that physicians or the public can call when they have questions related to various types of chemical exposures. A certified occupational and environmental health nurse is available to triage physicians' questions and to direct their inquiries to the appropriate staff member. The NYSDOH also works closely with the federal Agency for Toxic Substances and Disease Registry (ATSDR), making their educational materials available to physicians upon request. One of these items is an environmental medicine case study entitled "Trichloroethylene (TCE) Toxicity," which provides the opportunity for physicians to earn continuing medical education credits from the Centers for Disease Control and Prevention. Physicians who would like to complete this training are encouraged to contact the NYSDOH for more information. A printed copy can be mailed to the physician or it can be accessed on-line at the following web site http://www.atsdr.cdc.gov/HEC/CSEM/tce/index.html. Where can I get more information? If you have any questions about the information in this fact sheet or would like to know more about TCE, please call the NYSDOH at 1-800-458-1158 or write to the following address: New York State Department of Health Bureau of Toxic Substance Assessment Flanigan Square, 547 River Street Troy, NY 12180-2216